Enable Javascript in your browser and then refresh this page, for a much enhanced experience.
truth table solution in Creative category for Boolean Algebra by shota243
import re
OPERATION_NAMES = ("conjunction", "disjunction", "implication", "exclusive", "equivalence")
TRUTHTABLE = '''
x | y | x∧y | x∨y | x→y | x⊕y | x≡y |
--------------------------------------
0 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 1 |
--------------------------------------
'''
def boolean(x, y, operation):
return int(re.search(r'^ *{0} *\| *{1} *\|'.format(x, y) + ' *([01]) *\|' * 5, TRUTHTABLE, re.MULTILINE).group(OPERATION_NAMES.index(operation) + 1))
if __name__ == '__main__':
#These "asserts" using only for self-checking and not necessary for auto-testing
assert boolean(1, 0, "conjunction") == 0, "and"
assert boolean(1, 0, "disjunction") == 1, "or"
assert boolean(1, 1, "implication") == 1, "material"
assert boolean(0, 1, "exclusive") == 1, "xor"
assert boolean(0, 1, "equivalence") == 0, "same?"
Sept. 3, 2014
Comments: