Enable Javascript in your browser and then refresh this page, for a much enhanced experience.
SET solution in Creative category for Moore Neighbourhood by Sim0000
def count_neighbours(grid, row, col):
allpos = {(r,c) for r in range(len(grid)) for c in range(len(grid[0]))}
neighbor = {(row+i, col+j) for i in (-1,0,1) for j in (-1,0,1)} - {(row, col)}
return sum(grid[r][c] for r, c in neighbor & allpos)
if __name__ == '__main__':
#These "asserts" using only for self-checking and not necessary for auto-testing
assert count_neighbours(((1, 0, 0, 1, 0),
(0, 1, 0, 0, 0),
(0, 0, 1, 0, 1),
(1, 0, 0, 0, 0),
(0, 0, 1, 0, 0),), 1, 2) == 3, "1st example"
assert count_neighbours(((1, 0, 0, 1, 0),
(0, 1, 0, 0, 0),
(0, 0, 1, 0, 1),
(1, 0, 0, 0, 0),
(0, 0, 1, 0, 0),), 0, 0) == 1, "2nd example"
assert count_neighbours(((1, 1, 1),
(1, 1, 1),
(1, 1, 1),), 0, 2) == 3, "Dense corner"
assert count_neighbours(((0, 0, 0),
(0, 1, 0),
(0, 0, 0),), 1, 1) == 0, "Single"
Sept. 30, 2014
Comments: